MathJax Syntax
1. $a^2 + b^2 = c^2$
2. $ax^2 + bx + c = 0$
3. $x = \dfrac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
4. $m = \dfrac{y_2 - y_1}{x_2 - x_1} = \dfrac{\Delta y}{\Delta x}$
5. $f'(x) = \lim\limits_{\Delta x \to 0} \dfrac{f(x+\Delta x)-f(x)}{\Delta x}$
6. $\dfrac{d}{dx} \left [[x^n \right ] = nx^{n - 1}$
7. $\int_a^b f(x)~dx = \left [[F(x) \right ]_a^b = F(b) - F(a)$
8. $\int_a^b f(x)~dx = f(c)(b - a)$
9. $\text{average value} = \dfrac{1}{(b-a)} \int_a^b f(x)~dx$
10. $\dfrac{d}{dx} \left [[\int_a^x f(t)~dt \right ] = f(x)$
Code for the above formulas
1 . $a^2 + b^2 = c^2$ 2 . $ax^2 + bx + c = 0$ 3 . $x = \dfrac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ 4 . $m = \dfrac{y_2 - y_1}{x_2 - x_1} = \dfrac{\Delta y}{\Delta x}$ 5 . $f'(x) = \lim\limits_{\Delta x \to 0} \dfrac{f(x+\Delta x)-f(x)}{\Delta x}$ 6 . $\dfrac{d}{dx} \left [[x^n \right ] = nx^{n - 1}$ 7 . $\int_a^b f(x)~dx = \left [[F(x) \right ]_a^b = F(b) - F(a)$ 8 . $\int_a^b f(x)~dx = f(c)(b - a)$ 9 . $\text{average value} = \dfrac{1}{(b-a)} \int_a^b f(x)~dx$ 10 . $\dfrac{d}{dx} \left [[\int_a^x f(t)~dt \right ] = f(x)$